
File: C:\WINDOWS\TEMP\QuickReport 3.doc

Build Reports
using

QuickReport 3
for Borland Delphi

Distributed Worldwide by QBS Software Ltd

2 B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3

Contents

What is QuickReport 3? ..3
There’s more ...3

A first report ...5

The components..9
Band components...10
Printable components ..11
Previews and composite reports ..13
Filters..15
Chart ...16

Creating reports ... 17
TQuickRep in detail...17
Working with bands ..22
Groups..27
Master/detail reports ..29

More about printable components.. 31
Text components ..31
Using expressions ..33

Creating a default custom preview... 36

Further resources .. 39

B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3 3

What is QuickReport 3?

QuickReport 3 is a set of Delphi components designed to let you
produce database output quickly and easily. As well as allowing you to
fling together printed reports, QuickReport lets you create print
previews where the user can check the result of a printout without
wasting paper, and export data to other file formats, such as plain
ASCII, comma separated values (CSV) and HTML.

QuickReport is itself written in Delphi and knows all about the Delphi
model for handling databases. So you can use it to report on traditional
BDE-based databases such as Paradox and dBase, client datasets used in
multi-tier environments, the new Delphi 5 ADO and Interbase Express
components and third party alternatives such as Apollo. You can even
use QuickReport formatting facilities to print out non-database data, if
you need to.

This manual is designed to get you up to speed quickly with
QuickReport, so that you can start to use it in your own applications at
once.

There’s more

QuickReport is a fine product – but if you need even more versatility,
you might consider upgrading to QuickReport Pro. Naturally, the Pro
version is offers everything in the standard product plus:

• Three extra export filters:
Excel XLS: The XLS filter is compatible with Excel 4 and later, and
provides a simple and robust mechanism for exporting unformatted
data into spreadsheets.
Rich Text RTF: The RTF filter, based on Microsoft’s RTF version
1.5 spec, supports more RTF features than TRichEdit itself.
Windows Metafile WMF: The WMF filter lets you capture report
output in a convenient graphical format.

• Some powerful extra components. Let the user do the work:
TQREditor is an end user report editor that you can ship royalty-free
with your app.

4 B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3

TQuickAbstractRep is a descendant of the TCustomQuickRep base
class that does not use TDataset - use it to build your own report
systems.
TQRLoopBand prints the number of times set in its PrintCount
property - great for creating blank forms.
TQRListWizard will create an instant report based on the fields of a
table.

• Expert technical support via email.

• Full source code. Use the source, Luke! The user can easily modify
the code to localise the language, adopt it to local interface
standards, add new features and so on.

• More demos with more depth, including examples of how to make
use of all the Pro edition features, and advanced techniques such as
writing custom functions for the expression evaluator.

You can upgrade to QuickReport Professional by ordering from our web
site, that of our distributor QBS Software Ltd at http://www.qbss.com or
from your local Delphi add-on reseller.

B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3 5

A first report

The best way to get the hang of the QuickReport library is to see it in
action. So this section explains how to set up a very basic report. With
the Delphi IDE running, follow these steps:

1 Choose File | New Application.
2 Drop a TTable component onto the main form.
3 Use the Object Inspector to set its DatabaseName property to

‘DBDemos’, TableName to ‘CUSTOMER.DB’ and Active to True.
4 Drop a TQuickRep component on the main form. Its size and

position don’t matter.
5 Set its DataSet property to ‘Table1’. This is a key step. The report

object to iterates through all the records in it DataSet, in this case
Table1, whenever it is printed or previewed.

6 If necessary, expand the Bands property in the Object Inspector by
clicking on the + symbol to its left. Set the HasDetail item to True.
You will see the detail band appear inside the report; changing the
property actually creates the DetailBand1 object.

7 Drop a TQRDBText component onto the newly created detail band.
8 Set its DataSet to ‘Table1’ and DataField to ‘Company’.

At this point your form should look something like Figure 1 below.

Figure 1 – Setting up a basic report

To check that you have set up the properties correctly, preview the
report by right-clicking somewhere on the TQuickRep component and
selecting the Preview item from the popup menu. If you did everything
right you should now see a preview window containing your report, as
shown in Figure 2.

6 B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3

Figure 2 – The preview window

If all has gone well, you now have a report that works at design time. Of
course all may not have gone well. If you are now mournfully gazing at
an entirely blank report, please check that you have completed all the
steps – a likely explanation is that you forgot to set TTable1’s Active
property to True. Similarly, if you are looking at a report with only one
line – ‘Kauai Dive Shoppe’ – the problem is probably that you failed to
connect QuickRep1’s Dataset property to TTable1.

One other problem which may bite you is that the buttons on the toolbar
above the report preview area fail to appear. This is nobody’s fault: you
have become a victim of what the manufacturer of your PC’s operating
system is pleased to call, in its technical documents, ‘DLL Hell’.
Specifically, your machine’s copy of the common control library
(comctrl32.dll) is before 4.72, and needs updating.

B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3 7

You can download a later version of comctrl32.dll from the Microsoft
website at http://www.microsoft.com. But since this is one of those files
that invariably turns up in new versions of Internet Explorer and
Windows Service Packs, you may well find it on one of those CDs that
they give away with PC magazines, and save a download. (In fact, it is
unlikely that this bug will bite you the developer. We describe it here so
that you will recognise the problem if one of your users is caught by it.)

Now lets make the report work as part of a compiled program. You need
to write code to call TQuickRep.Preview:

1 Drop a button to your form and set its Caption property to ‘Preview’
2 Double click on the button to add an OnClick event. Add a line of

code, so that it looks like this:

procedure TForm1.Button1Click(Sender: TObject);
begin
 QuickRep1.Preview;
end;

Now run your application and click the Preview button. As before, you
should see the preview window appear. If you want to try printing the
report directly to the default printer, simply change the call to the
Preview method to a call to Print, ie

procedure TForm1.Button1Click(Sender: TObject);
begin
 QuickRep1.Print;
end;

At this point I must admit to taking a slightly dirty shortcut. Our test
application a TQuickRep component on its main form and, as you can
see, this looks pretty odd. In real applications you never display a form
containing a TQuickRep component. Instead you use them from other
forms.

So what we should really do to finish off, if this little example were
going to be a real application, is:

1 Create another form – it will be called Form2
2 Make the new form into the main form of the project by setting

Project | Options | Main form to Form2
3 Drop a button on Form2

8 B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3

4 Write code like this in the button’s event handler
procedure TForm2.Button1Click(Sender: TObject);
begin
 Form1.QuickRep1.Preview;
end;

5 Compile the project. The compiler will complain that Unit1 is not in
Unit2 ’s Uses list, and offer to fix the code. Accept the offer.

The application should now compile and run, and looks prettier and
more ‘realistic’. The end user doesn’t get to see any bewildering
TQuickRep components.

But doing this aesthetic polishing doesn’t get us any further with
QuickReport. So I am going to leave out the need to have a second form
from all the examples from this point onwards, and trust you will
remember when making real applications.

B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3 9

The components

The QuickReport components are all contained in the QReport tab of
the Delphi component palette. Here is a whistle stop tour of what they
are and what they do to help you get your bearings.

Figure 3 - TQuickRep and band components

TQuickRep. This is the most important component of them all, a
container for all the other printing components. It represents the paper
on which your report will be printed. Its Page property lets you set up
the dimensions of the paper you are going to print on, while the Dataset
property specifies a source of data that the report will iterate through.

Note that, instead of dropping a TQuickRep component onto an ordinary
form, you can instead add a TQuickReport module to your project:

1 Choose File | New… to display the New Items dialog box.
2 Choose the New tab
3 Select the Report item (middle of the bottom row)

A TQuickReport is a bit like a TDataModule – it is a specialist type of
form, which is never displayed to the user. If you wish you can use
TQuickReport pseudo-forms instead of TQuickRep components on
ordinary forms – there is no difference in their methods, properties and
events. But we recommend, from experience, that you put a TQuickRep
component on a form: it’s the more versatile approach. For example,
having the TQuickRep component on a form lets you use the form’s
OnCreate event if you want to create additional objects to be used by
the report programmatically.

10 B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3

Band components

These are also container components, representing horizontal strips
across report. Bands can be associated with a physical position on a
page – for example the top – and also reflect the master/detail
relationships in the database that is being displayed. For example, in the
same way that there might be many sales records for a given customer
record, so a band containing data about an individual sale might appear
many times for each occurrence of a band containing customer data.

TQRSubDetail. This is the detail band in a master/detail relationship.
You can also make it the master of another detail band, and so create
multiple levels of subdetails.

TQRStringsBand. This band provides one mechanism to report on data
without using a TDataSet. It encapsulates a TStrings container; instead
of retrieving a sequence of records from a database, it retrieves a
sequence of strings from its container.

TQRBand. A generic band type, which can act in different roles
according to it BandType property. Usually there is no need to drag a
TQRBand onto a report. Instead use the Bands property of TQuickRep,
which creates TQRBand objects and sets their band type in one go.

TQRChildBand. Use TQRChildBand objects when you need to extend
an existing band. For example, suppose you have placed some
TQRMemo components in a band, and wish to add, say, a TQRLabel,
which should always appear below. Since TQRMemo objects can
expand themselves according to their contents, it is not sufficient to
arrange the label within the band. Instead add in a TQRChildBand
object, and put your label on that. The easiest way to add a child band,
by the way, is to double-click the HasChild property of its parent in the
Object Inspector.

TQRGroup. A band that prints whenever an expression changes, usually
a database field. This band is used to group like records together. For
example, given a database table containing US addresses, one could sort
them by a State Code field and add a group band with it Expression
property set to the State Code field. When the report is printed, the
contents of the group band will be printed between records belonging to
a given state.

B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3 11

Printable components

Figure 4 - Printable components

The QuickReport printable components are mostly equivalents of
standard controls that you use on forms. These are the controls, which
actually get printed on the paper. Position them within bands to define
the layout of your report.

TQRLabel. Place some static text on the page.

TQRDBText. Equivalent of a TDBText control – use it to display the
contents of a linked database field. Unlike ordinary data-aware controls,
but in common with all QuickReport controls, TQRDBText uses a
DataSet property to specify its source of data. Normal data-aware
controls use a DataSource property, which requires you to supply an
extra TDataSource component to ‘wire’ controls to a dataset.
QuickReport controls have no such requirement.

TQRExpr. Use this to display an ‘expression’. Typically you use one of
these when you need to massage the appearance of your data before
printing it out. The best way to think of these is as ad hoc calculated
fields, used only in the report. For example, you might use it to
concatenate the parts of a customer name, held in a customer table as
string fields called “Title”, “Forename” and “Surname”. To do this
simply set the Expression property of TQRExpr to

Title + " " + Forename + " " + Surname

In real life, you would probably use a more complex expression to cope
with blank fields elegantly, but you get the idea.

12 B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3

TQRSysData. A control to display ‘system data’, by which we mean
things like the current page number within the report, and the current
date and/or time.

TQRMemo. Very much like its standard control cousin the TMemo; use
this to display multiple lines of text. As you would expect, the text to be
printed is held in a TStrings type property called Lines.

TQRExprMemo. A composite of TQRExpr and TQRMemo. You can use
this to include {braced} expressions in multi-line blocks. This makes it
an absolute natural for doing addresses, especially since it includes a
boolean property RemoveBlankLines. For example:

Company : {CompanyName}
Address : {Address1}
 {Address2}
Contact : {Contact + ' ' + Phone number}

TQRRichText. Place some rich text (ie multi-line text with RTF
formatting) on the page. One use of this component is to print the
contents of a TRichEdit control – simply assign it to TQRRichText’s
ParentRichEdit property.

TQRDBRichText. As you’d expect, this is a data-aware version of
TQRRichText. Use it to print formatted memos stored in BLOB fields.

TQRShape. A cousin of the little-used TShape control from Delphi’s
‘Additional’ palette. Actually the QuickReport version is very useful for
placing ‘furniture’ into report layouts such as dividing lines above totals
and grouping rectangles.

TQRImage. Display a picture or logo on a report using this control.
Supports the same vector and bitmap image formats as TImage, and can
be loaded at design time using the Picture property.

TQRDBImage. A data-aware image control for displaying images stored
in BLOB fields in the database.

B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3 13

Previews and composite reports

Figure 5 - Filters and miscellaneous components

TQRCompositeReport. Sometimes you need to group together separate
reports into a single print run. For example, maybe you need to print out
all the new customers obtained in the last week, together with a
summary of all orders in the last week and also a list of stock that needs
reordering. As far as your customer is concerned these things belong
together and should be printed together. But from the database point of
view you will want to use three separate TQuickRep components to do
the job.

The way to handle this situation is to use a TQRCompositeReport
component. Drop one on the form where you want to kick off the
printing. First you need to define a handler for its OnAddReports event,
which calls the TQRCompositeReport.Add method to add all the
TQuickRep components you need to print. Suppose the reports you want
to print are held on forms called RepNewCust, RepOrderSummary and
RepStockReorder, and in each case the TQuickRep component on the
form is called ‘Report’ (see the section ‘TQuickRep in detail’ below for
why you might do this). Then your OnAddReports event handler should
look like this

14 B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3

procedure TForm1.QRCompositeReport1AddReports(
 Sender: TObject);
begin
 QRCompositeReport1.Reports.Add(RepNewCust.Report);
 QRCompositeReport1.Reports.Add(RepOrderSummary.Report);
 QRCompositeReport1.Reports.Add(RepStockReorder.Report);
end;

(If you don’t mind using the with statement in your code, you can tidy
up this fragment considerably by wrapping it up in
with QRCompositeReport1.Reports do
begin
 ...
end;

and knocking out the ugly repetitive QRCompositeReport1.Reports from
the middle three lines.)

Now you can call QRCompositeReport1.Print to print out all three
reports in a single batch, and QRCompositeReport1.Preview to preview
them together. There are also TQRCompositeReport component
properties that let you set up paper sizes and set an overall title for the
composite report – basically everything you need to handle the output
from the multiple reports in one place.

TQRPreview. To preview a report before it is printed for real, all you
need do is call TQuickRep.Preview and a standard preview window will
appear. There are times, however, when you want to have more control
over the exact appearance of the preview.

The TQRPreview control lets you do this. Drop it on one of your own
forms and, after you have added a line of code to the
TQuickRep.OnPreview event, the control will act as a frame for the
previewed report. If you are more ambitious, or you want to change the
preview of a composite report, you can register your own preview form
as the default. See the section ‘Error! Reference source not found.’
later on for details.

B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3 15

Filters

Sometimes, instead of printing or displaying it directly, you need to
export data from your database to another format. QuickReport comes
complete with three filter components that let you do this quickly and
easily for their respective formats. Simply drop the export filter onto the
same form as the report, and the file format appears in the drop-down
list of the Save To file dialog in the preview. Registration is automatic,
and you don’t need to code a thing! (Don’t worry - you can export a
report programmatically too if you wish – see below.)

Note that not all printable components are exported by filters.
Specifically, only the contents of the following text-producing
components appear in exported data: TQRLabel, TQRDBText,
TQRExpr, TQRMemo, TQRSysdata and TQRExprMemo.

TQRTextFilter. ‘Text’ format: exports the contents of the report in plain
ASCII, using spaces to separate fields.

TQRCSVFilter. CSV format: exports the report as ‘Comma Separated
Variables’. As well as using a comma to separate fields, this filter places
“double quotes” around them, which allows you to have commas within
the fields themselves. This format is easily imported into spreadsheets
such as Microsoft Excel. By the way, the component has a Separator
property that specifies the character used to separate the fields. By
default this value is set to ‘,’ comma, but it can be changed to match
your requirements.

TQRHTMLFilter. HTML format: exports the report to a HyperText
Markup Language file, as used in web browsers, some emailers, help
systems and many other places.

It is also possible to call filters explicitly from code. This fragment uses
the HTML filter.

quickrep1.ExportToFilter(
 TQRHTMLDocumentFilter.Create('c:\report.txt'));

To use the Text or CSV filters in this way, use the same ExportToFilter
call but instantiate a TQRAsciiExportFilter or
TQRCommaSeparatedFilter object as appropriate.

16 B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3

Chart

TQRChart is a version of TChart adapted to work with QuickReport.
This allows you to add complex charts to your reports – the combination
is very powerful indeed. TQRChart is used in the same way as the
ordinary TChart control – double click it to bring up its extensive
property editor. For details of how to accomplish tasks such as setting
up series and adjusting the look of a chart, please see the TeeChart
documentation.

Version incompatibility
Because of dependency issues beyond our control, certain versions of
TeeChart are incompatible with newer versions of QuickReport, and the
TQRChart control and the whole of TeeChart can be unloaded when
you upgrade QuickReport. For example, at time of writing the Delphi 3
version of QuickReport 3 (or higher) will not work with TeeChart,
because the version of TeeChart that is shipped with Delphi 3 is coded
to depend on the QuickReport 2 package. A workaround is to download
the (free) TeeChart 4 evaluation version from the TeeMach site at
http://www.teemach.com/.

This issue extends to the Decision Cube components found in
Client/Sever and Enterprise Editions of Delphi – these depend on
TeeChart, and get unloaded when it does. At present, there is no way to
use the Delphi 3 Decision Cube with both QuickReport 3 and TeeChart.

We do apologise for this unsatisfactory situation. Since it is caused by
design decisions made by other parties in code we cannot access, so that
we are not able to fix matters autonomously. If you run into trouble
when upgrading QuickReport, please check our website
http://www.qusoft.no/ and TeeMach’s for the latest information.

B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3 17

Creating reports

The first step when creating a QuickReport is to create a form to store
your TQuickRep component. We refer to this form as a ‘report form’
since it’s just a container for a report component and is not shown to the
end user at runtime. It’s a good idea to adopt a naming convention for
such reports so that they are easily identifiable in the project manager
and in directory listings. For example, you could prefix all report form
names with ‘rep’ or ‘rp’ to make them stand out. You might want to use
a similar scheme with form and data module unit names.

TQuickRep in detail

The next step is to drop a TQuickRep component onto the form. Another
useful convention you may like to adopt: by naming all TQuickRep
components ‘Report’, you can reference them as
repCustomerListing.Report, repSalesListing.Report and so on.

Units and Zoom properties
When dropping the TQuickRep component on a form you will se a grid
to act as a guide for positioning components. The grid is shown in the
current QuickReport units. Select the currently active unit by changing
the TQuickRep.Units property in the property inspector. The grid will be
updated when you change this property.

Figure 6 - Adjusting the Units property to alter grid spacing

With Units set to ‘MM’, the grid displays at 10mm intervals; if it is set
to ‘Inches’ then the grid displays at 1" intervals. Using the grid you can
produce very accurate report layouts, positioning and sizing
QuickReport components to 0.01" or 0.01mm.

18 B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3

Usually your screen is too small to display an entire TQuickRep
component, since it sizes itself based on the actual paper size selected.
To get a clearer picture of the whole report, change the Zoom property
to 50% or less. Changing the zoom causes the TQuickRep component
and all the printable controls it contains to be redrawn at once to the
requested scale. This feature can also be used to enlarge important
details for accurate positioning and sizing.

Paper size and margins
You can set up page layout accurately by expanding the Page property
of the TQuickRep component. Double click on the + sign to the left of
‘Page’ in the Object Inspector to expand the sub properties. You will
now see all the settings controlling the page layout.

Figure 7 - Page sub properties

The values given are in the currently selected Units, in this case inches.
The margin settings can be seen as blue dotted lines on the TQuickRep
component. All bands are sized to fit inside the margins.

The sub properties are described in Table 1 below:

B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3 19

Table 1 - Sub properties of Page

Property Type/Values Notes

BottomMargin Extended Units property determines
interpretation.

Columns Integer Number of columns when
printing multi-column detail
bands.

ColumnSpace Extended Space inserted between each
column in a multi column
report. Units property
determines interpretation.

LeftMargin Extended Units property determines
interpretation.

Length Extended Read-only, unless PaperSize
is set to Custom. Units
property determines
interpretation.

Orientation TPrinterOrientation =
(poPortrait, poLandscape)

PaperSize TQRPaperSize =
(Default, Letter, LetterSmall,
Tabloid, Ledger, Legal,
Statement, Executive, A3, A4,
A4Small, A5, B4, B5, Folio,
Quarto, qr10X14, qr11X17,
Note, Env9, Env10, Env11,
Env12, Env14, Sheet, DSheet,
ESheet, Custom)

These are all the default paper
sizes supported by Windows.
To use another paper size, set
this property to Custom and
set Length and Width
appropriately – but see also
note below.

RightMargin Extended Units property determines
interpretation.

Ruler Boolean Enables display of grid.

TopMargin Extended Units property determines
interpretation.

Width Extended Units property determines
interpretation.

20 B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3

Not all printer drivers support setting custom paper sizes through the
Custom setting of Papersize. In these cases you must select ‘Custom
paper size’ in the printer driver’s own dialog (accessed from the
Windows Control Panel) and define the paper’s dimensions there. Set
this custom paper size to be the default paper size for that printer and
finally set the TQuickRep.Page.PaperSize property to Default. Your
custom size will now be picked up at runtime.

Alternatively, and perhaps more robustly, use the next largest standard
paper size, and set the margins to keep the printing within the custom
area.

Selecting a font
As you would expect, you can set the default font for your report in the
TQuickRep.Font property. Double click on the property to get the
standard Delphi font dialog.

The fonts listed are the Windows system fonts, True Type fonts and any
PostScript fonts (if Adobe TypeManager is installed). You can use any
combination of fonts in your reports but we advise the use of TrueType
or PostScript fonts if you intend to allow the user to preview the report.
The system fonts do not scale very well in preview.

Some dot matrix printers print much faster if you select a font already
build into the printer hardware, called a ‘printer font’. Such fonts are not
listed by the font dialog, but can be set programmatically:

repCustomerListing.Report.Font.Name := 'CG TIMES';

The readability of your report depends very much on your font
selection. You should consider this carefully when selecting fonts.
Using many different fonts, colours and styles in a report can easily
make it look cluttered and difficult to read.

B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3 21

Title and Description
The TQuickRep component has Title and Description string properties
to identify and describe the report. These are provided for your
convenience, so you can make report selection a data-driven procedure.
For example, you might have generate a menu that lists all your reports
by title and shows the description when the user selects a report. An
example of this can be seen in the QuickReport example project.

The Title property can be printed on the report itself using a
TQRSysData component.

Functions
The Functions property of a TQuickRep allows you to set up constants
and functions that can be used by QuickReport expressions contained in
any TQRExpr, TQRExprMemo and TQRGroup components that you
drop on the report. Double-click the property the ‘…’ button in the
object inspector to bring up the special property editor:

Figure 8 - Functions property editor

Use this dialog, and the expression builder that underlies it, to define
constants that you expect to require in multiple expressions. For
example, you can see that in Figure 8 above I have defined, with a
regrettable lack of originality, the constant PI as 3.14159265358979.
The other functions you see, PAGENUMBER, COLUMNNUMBER and
REPORTTITLE, are automatically predefined.

22 B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3

Working with bands

QuickReport is a banded report generator. If you are unfamiliar with
banded report generators you can think of them as small paper
templates, which are arranged horizontally on a page and filled with
data. Different templates are copied into different parts of the
page/report. The printable components, TQRLabel, TQRDBText and so
on, are designed to be placed on these bands. Placing these components
directly on the report is not supported.

The easiest way to add bands is via the TQuickRep.Bands property in
the Property Inspector. Click the ‘+’ sign to the left of the word ‘Bands’
to expand the list of common bands:

Figure 9 - Bands sub properties

The Object Inspector shows if a given band type exists in the report or
not, and you can add or delete a band simply by changing the relevant
property. Bands created this way get names that describe their function:
DetailBand1, PageHeaderBand1 and so on. The BandType property of
each band is also set automatically.

B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3 23

You can also add bands by selecting the TQRBand component on the
component palette and dropping it on the report. Note that if you do it
this way you must take care to set the BandType property to the desired
band type, and you should also give the band a descriptive name. The
Bands property of the container TQuickRep will update itself to reflect
bands added to the report this way.

Here are the simple band types you can add to a report:

Table 2 - Simple band types

Band type Purpose

Page Header The first band usually printed on all pages. Whether
it is printed on the first page printing is governed by
the report’s Options.FirstPageHeader property. The
default is to print the first page header.

Title A title band is the first band printed to a report (after
the very first page header, if any). It’s useful for
printing the report title, data selection criteria,
creation date and time and so on.

Column Header The column header band is printed on top of each
report column. In a regular single column report, this
band is printed once per page, following the page
header (and the title band for the first page). In a
multi column report it’s printed once for each
column. It’s most useful for printing field names.

While it is possible to add a band manually and set its BandType to
rbSubDetail or rbGroupHeader, this is not recommended. These band
types are intended for use only with TQRSubDetail and TQRGroup
components. Using them elsewhere may cause unexpected and
undesirable effects when the report is printed.

24 B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3

Detail One detail band is printed for each record (row) of
data in your dataset. This is perhaps the most
important band in your report and is usually what
takes most of the space on the final output. You
would typically put data-aware printable controls
such as TQRDBText on this band.

Summary After all detail bands has been printed you can print a
summary band. This is often used for printing totals
of numeric fields.

Page Footer The last band printed on all pages. Last page printing
is governed by the report’s Options.LastPageFooter
property. The default is to print the last page footer.

As you add new bands to a report, you will notice that they
automatically position themselves in the actual printing order. You will
see that the Page Header band is on top, followed by the Title band,
column header band and so on, as shown in Figure 10 below.

Figure 10 - Simple band types

B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3 25

Each band has its band type printed in small letters in its lower left
corner. This allows you to identify the bands while designing the report.
This text is not printed on the final report.

Bands appear on the TQuickRep component in the order in which they
are printed. It is helpful to understand why the bands line up the way
they do. Generally bands will print in at the frequency shown in Figure
10, although things become more complicated when you start to add sub
details and group bands.

Sizing the bands
Bands derive their horizontal size from the containing TQuickRep
object. Their Size.Width properties should be considered read only;
values written to them are ignored. For a single column report, the width
of all bands is set to the page width minus the left and right margins. In
multi-column reports, the width of certain band types (Column Header,
Detail, Sub Detail, Group Header and Group Footer) is adjusted to
reflect the width available for a single column.

However you can adjust the vertical size of the bands. Select a band and
resize it with the mouse in the usual way or, if you want more accurate
control, setting an exact value in the Size.Height property.

Turning bands on and off
You might sometimes want to disable printing of a certain band. This
can be done, either at design time or at run time, by setting the
TQRBand.Enabled property to False.

During report generation you can also temporarily disable printing of a
band by creating an event handler for the band’s BeforePrint event. This
event handler takes a boolean parameter PrintBand that can be set to
False to disable band printing – but just for that single instance. This
feature can be used to perform simple filtering:

procedure TrepCusList.RepDetailBeforePrint
 (Sender: TQRCustomBand;
 var PrintBand: Boolean);
begin
 PrintBand := CustTableTotalSales > 3000000;
end;

26 B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3

Note: When PrintBand is set to False for a detail band, the values for
that record are not included in any aggregate TQRExr function, for
example the SUM function. This is a behaviour change between
QuickReport 2 and QuickReport 3.

If you turn off a Page Footer band, it will have the effect of leaving a
blank space at the bottom of each page – the Detail Bands will not
expand to fill the space. To optimise performance, QuickReport doesn’t
check the length of the page footers all the time. So after you change the
Enabled property of your Page Footer, call the report object’s
ResetPageFooterSize method to force QuickReport to update its page
footer information.

B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3 27

Groups

Groups allow you to generate extra bands between groups of records.
For example, if you were listing an address book, you might wish to
group all the contacts whose name began with the same capital letter,
and to print that letter in large type above each group – in fact this is
what we do in the example.

To create a group:

1 Create a simple report as described in ‘A first report’ above.
2 Set the IndexName property of the TTable component to

‘ByCompany’.
3 Drop a TQRGroup component onto an existing TQuickRep object,

where it appears as a new band. This band will be the group header.
Every time the group ‘breaks’, this band will be printed.

4 Set the Expression property to

COPY(Table1.Company, 1, 1)

This extracts the first character from the ‘Company’ field.
5 Drop a TQRExpr control onto the header band. Set its Expression

property to the same value:

COPY(Table1.Company, 1, 1)

In addition you can also add a group footer band. Although we don’t
really need one here, we’ll make one for practice.

6 Select the TQRBand component on the palette and drop it on the
report. Rename it to FooterBand1.

7 Click on the group header band once more. Set the
TQRGroup.FooterBand property to FooterBand1.

8 Drop a TQRLabel onto the footer band. Set its Caption property to
‘FOOTER’.

If all has gone to plan, you should be looking at something like Figure
11:

28 B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3

Figure 11 - Creating a group

Now preview the report, either by running the program, or simply right-
clicking on the report object and choosing Preview:

Figure 12 - Preview of a grouped report

As expected, the resulting report shows a list of all the companies
grouped in alphabetical order, with each group headed by a line showing
the current letter.

B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3 29

Master/detail reports

You will very often wish to create a master/detail report – that is one
where you are extracting data from two datasets connected by a
master/detail relationship. QuickReport allows you to include one or
more such relationships in a report using TQRSubDetail components.

An obvious example of a master/detail report is to list out all the orders
associated with each customer in a database. Here is a quick example:

1 Start with the group report as created in the previous section.
2 Drop a TDataSource component on the form, and make its DataSet

property ‘Table1’.
3 Drop a new TTable component on the form. Set its DatabaseName

property to ‘DBDemos’, TableName to ‘ORDERS.DB’, IndexName
to ‘CustNo’, MasterSource to ‘DataSource1’, MasterFields to
‘CustNo’ and Active to True. The two TTable components are now
set up in a master/detail relationship.

4 Drop a TQRSubDetail component onto the existing TQuickRep
object, where it appears as a new band. Notice that its Master
property is automatically set to QuickRep1. The master/detail
relationship between the two TTable objects is mirrored between the
report object and its sub detail band.

5 Set the TQRSubDetail component DataSet property to ‘Table2’. The
TQRSubDetail component iterates all through its DataSet for each
change in the Dataset of its Master.

6 Drop three TQRDBText components on the sub detail band. Set their
DataSet properties to ‘Table2’, and set the DataField properties to
‘OrderNo’, ‘SaleDate’ and ‘ItemsTotal’ respectively.

If you have done all that correctly, you should now be looking at
something like Figure 13 below.

30 B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3

Figure 13 - Creating a report with sub detail

Now preview the report. The result will look like Figure 14, with each
customer’s orders listed below the customer name. Note that the format
of the date and currency fields depends on Windows’ international
settings. Mine are set to British, your mileage will obviously vary.

Figure 14 - Preview of a master/detail report

B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3 31

More about printable components

By now, you will have a feel for QuickReport’s printable components –
use them like ordinary controls to define you layout. However, there are
a few QuickReport-specific things to learn about them.

Text components

QuickReport’s printable text components – TQRLabel, TQRDBText,
TQRExpr, TQRSysData, TQRMemo, TQRExprMemo, TQRRichText and
TQRDBRichText – share some common properties, which they inherit
from a parent, class:

Table 3 - Text component properties

Property Purpose
AlignToBand By default components will print/align at the position

set in the designer. But sometimes it is more practical
to align components to the vertical edges of the band
that it is placed on. When AlignToBand is True, a
text components will align itself relative to its parent
band instead of its own text rectangle.

AutoSize Set this property to True and a component sizes itself
horizontally to fit whatever text is put into it.

AutoStretch If AutoStretch and WordWrap are both True, a
component can expand vertically to accommodate its
text. When a component expands in this way it also
expands its parent band, provided that band’s
CanExpand property is set to True. A band can
expand over multiple pages if necessary.

Note that if a component expands it will not move
other components on the same band down. If you
have components whose desired position should
depend on the length of a stretching text, you should
place these in a child band.

Note also that this property cannot be used for
components on any band that prints at the bottom of
the page. This is typically the page footer, but also
applies to any band that has had its AlignToBottom

32 B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3

property set to True.

Frame All text components can display a visible frame
around them. This property controls the appearance
of the frame, which sides it is drawn on and so on.

Size All printable components share the Size property. If
AutoSize is False you can use this property to set the
exact size of the component. This property also
contains the position of the component relative to its
parent band.

WordWrap If WordWrap is set to True text can span multiple
lines.

Formatting fields
TQRDBText components use any formatting options defined for the
field to which they are connected. Sometimes, however, you need to
customise the display of a particular value; this can be achieved using
TQRDBText’s Mask property. This takes the same values as Delphi’s
own FormatFloat function (for numeric fields) and FormatDateTime
function (for date and time fields) – in fact, QuickReport itself calls
these functions to do the work. To give you an example, suppose you
wished to print out a numeric value to two decimal places, with the
thousands separated by a comma, and negative values shown (in
parentheses) in the style favoured by accountants. Then you could use a
Mask like this

#,##0.00;(#,##0.00)
which would cause the values

1234 and -1234.5

to be printed as

1,234.00 and (1,234.50)

respectively.

Check out the Delphi help for FormatFloat and FormatDateTime for
details and more examples.

To specifically set a formatting of a field use the Mask property. The
mask works differently for different field types.

B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3 33

Using expressions

QuickReport includes an advanced expression evaluator, used by the
TQRExpr, TQRExprMemo and TQRGroup components. Expressions
can be used to combine and manipulate database fields, and perform
advance formatting. Their syntax is rather like that of Object Pascal: the
expressions can be of boolean, float, integer or string type. Note that
date and time fields are converted into strings, and BLOB and memo
fields are not supported in expressions.

The evaluator supports the usual set of operators:

Table 4 - Operators supported by the expression evaluator

Operators Function

+ Addition, string concatenation

- * / Subtraction, multiplication, division

() Parentheses

And Or Not Logical operators

= < >

<= >= <>

Comparison operators

and a set of standard functions:

 Table 5 - Functions supported by the expression evaluator

Function Description
AVERAGE(EXPR) Aggregate function. Averages the EXPR

COPY(STR,S,L) Returns a sub string of STR starting at
character S length L

COUNT Aggregate function. Returns the number of
iterations of the Master band.

DATE Return current date as a string

DIV(X, Y) Integer division of X by Y

FALSE Logical value False

FORMATNUMERIC(F, N) Format numeric N using string mask F. The

34 B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3

mask takes the values as Delphi’s
FormatFloat function.

FRAC(NUM) Returns the fractional part of a NUM

IF(EXPR, R1, R2) Returns R1 or R2 depending on the boolean
EXPR

INT(NUM) Returns the integer part of NUM

LOWER(STR) Returns STR in lowercase

MAX(EXPR) Aggregate function. Returns the highest
value of EXPR

MIN(EXPR) Aggregate function. Returns the lowest
value of EXPR

PRETTY(STR) Returns STR in ‘pretty’ case, ie first latter
in uppercase, the remainder lowercase

SQRT(NUM) Returns the square root of NUM

STR(NUM) Converts NUM to a string

SUM(EXPR) Aggregate function. Returns the sum of
EXPR

TIME Return current time as a string

TRUE Logical value True

TYPEOF(EXPR) Returns the data type of EXPR as a string,
eg ‘BOOLEAN’

UPPER(STR) Returns STR in uppercase

If your expression includes aggregate functions like SUM or COUNT you
must link the Master property to the component, TQuickRep or
TQRSubDetail that will be used to update the expression. For a simple
report this is your TQuickRep component, but in a complicated report
with many datasets you must take care to link to the correct
TQRSubDetail. The expression is recalculated each time the record
pointer of the linked master is advanced.

The ResetAfterPrint property is also useful when working with
aggregation functions, and allows you to create, for example, group
totals as well as running totals.

B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3 35

The expression builder
To make it easier to create expressions for your reports, QuickReport
includes a special property editor, which appears when you click the
‘…’ button. This is shown in Figure 15.

Figure 15 - Expression builder dialog

The expression builder lets you design your expression by selecting
functions and field names from lists – so it makes it a lot easier to avoid
typos in identifier names. It also brings up special dialogs to prompt for
function arguments.

Figure 16 - Setting function arguments in the expression builder

36 B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3

Creating a default custom preview

We mentioned back in the ‘Previews and composite reports’ section that
it was possible to change the default preview mechanism. It is time to
look at how this is done.

The first step when creating a custom default preview is to derive a new
class from TQRPreviewInterface, like this:

// use QRPrntr to get TQRPreviewInterface

TQRCustomPreviewInterface = class(TQRPreviewInterface)
 public
 function Show(AQRPrinter : TQRPrinter)
 : TWinControl; override;
 function ShowModal(AQRPrinter : TQRPrinter)
 : TWinControl; override;
 end;

Notice that this is an interface1 class – it serves only to define a couple
of functions, and has no data of its own. These two functions are
implemented to construct and display your custom preview in non-
modal and modal forms.

Lets suppose that the preview form is going to be called TCustPreview.
Then the implementation of the TQRCustomPreviewInterface methods
might look like this:

function TQRCustomPreviewInterface.Show(
 AQRPrinter: TQRPrinter): TWinControl;
var
 frm : TCustPreview;
begin
 frm := TCustPreview.Create(Application, AQRPrinter);
 frm.Show;
 Result := frm;
end;

1 We have not used Delphi’s interface keyword to define these classes because this is not currently
common practice, and many Delphi programmers are unfamiliar with the syntax. However, the
concepts are very similar.

B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3 37

function TQRCustomPreviewInterface.ShowModal(
 AQRPrinter: TQRPrinter): TWinControl;
var
 frm : TCustPreview;
begin
 frm := TCustPreview.Create(Application, AQRPrinter);
 frm.ShowModal;
 Result := frm;
end;

To register our alternative previewer, we need to call the
RegisterPreviewClass function, which is in the QRPrntr unit. The call
looks like this:

RegisterPreviewClass(TQRCustomPreviewInterface);

Now we are done with the glue code, and can build the actual previewer
form. Mine is minimal; just a single TQRPreview control stuck onto a
form:

Figure 17 - Simple preview form

When you do real previews in your applications, you will probably want
to add buttons to call TQRPreview’s Zoom method and other facilities.

To support the previewing mechanism, I had to write a little more code.
Here is the declaration of TCustPreview. Notice I have added a new
constructor, which expects to receive the TQRPrinter argument passed
in by the Show and ShowModal methods of the interface class. Delphi
generates a warning message that the new constructor hides the original.
In this case it is deliberate, so I have wrapped the class in

{$WARNINGS ON} ... {$WARNINGS OFF}

38 B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3

compiler directives to make it shut up.

{$WARNINGS OFF}
 TCustPreview = class(TForm)
 QRPreview1: TQRPreview;
 procedure CustPreviewClose(Sender: TObject;
 var Action: TCloseAction);
 private
 { Private declarations }
 fQRPrinter : TQRPrinter;
 public
 { Public declarations }
 constructor Create(AOwner : TComponent;
 AQRPrinter : TQRPrinter); virtual;
 end;
{$WARNINGS ON}

Finally, here is the implementation of the class. Notice in particular the
cleanup code held in the form’s OnClose event. If you don’t call
ClosePreview here, you will get a nasty memory leak. (QuickReport 2
users should note that this is a new requirement. You must modify your
existing preview forms when porting them to QuickReport 3 and later.)

constructor TCustPreview.Create(AOwner: TComponent;
 AQRPrinter: TQRPrinter);
begin
 inherited Create(AOwner);
 fQRPrinter := AQRPrinter;
 QRPreview1.QRPrinter := AQRPrinter;
end;

procedure TCustPreview.CustPreviewClose(Sender: TObject;
 var Action: TCloseAction);
begin
 fQRPrinter.ClosePreview(Self);
 Action := caFree;
end;

B u i l d R e p o r t s u s i n g Q u i c k R e p o r t 3 39

Further resources

There are many other resources available to you, to help you make the
most of QuickReport in your Delphi applications.

Help files. The QuickReport help files are installed and integrated with
Delphi’s own help. As well as context-sensitive Reference for
components and properties, there are also extensive User Guide and
Knowledge Base sections. Since they don’t appear in the main Help
contents, it’s easy to overlook these, so if you get stuck or need to know
more, remember to fire up QuickReport help from its Start menu
shortcut.

Demo applications. You’ll find these in the

Program Files\Borland\Delphi5\Demos

directory. The project Quickrpt\Qr3\qr3demo.dpr contains lots
of examples of different kinds of report. Start here if you want to exploit
QuickReport’s fancier features, like export filters. Also see the project
Db\Mastapp\mastapp.dpr contains a good example of
QuickReport being integrated into a larger application.

Templates and wizards. Again often overlooked – the standard Delphi
repository includes templates for Master/detail, Labels and List reports,
plus a report building wizard. Take File | New in the Delphi IDE and
have a look at the Forms and Business tabs.

Website. Our website is http://www.qusoft.com Please come and check
it out to find more examples, updates, tips and add-ons.

